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A quantitative structure-activity relationship (QSAR) modeling approach based on the location of
each amino acid along three axes obtained by principal component analysis (called z scores) was
extended to physical and functional properties of proteins, where the proportion of particular amino
acids rather than a precise sequence is the determining factor. Coomassie Brilliant Blue spectral
responses to amino acid homopolymers (R ) 0.926) and proteins, either as a function of their contents
of six basic and aromatic amino acids (R ) 0.976) or as a function of the contributions of these
amino acids to the three z scores (R ) 0.935), were modeled. The ultraviolet absorbance of proteins
was modeled in terms of the z score contributions of tyrosine, tryptophan, and cysteine (R ) 0.995).
Modeling many protein functional properties in this manner appears to be possible. An approach to
modeling peptide behaviors that depend on short sequences of amino acids was also considered.
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INTRODUCTION

Peptides and proteins participate in a vast array of
biological functions. They provide physical structure,
enzyme activity, and transport across membranes and
within organisms. They also act as hormones, enzyme
inhibitors, antibodies, olfaction and taste receptors, and
antimicrobial compounds.

In foods, peptides (including proteins) provide nutri-
tion and influence organoleptic and “functional” proper-
ties. The functional properties have been described as
solubility, viscosity, gelation, emulsification, and foam
formation (1). Peptides can also form films and glasses
and contribute to color and flavor. Other authors add
to this list binding of flavor compounds and water
(which affects viscosity and gelation), modification of
surface tension and interfacial activity (which influence
emulsification and foaming ability), and cohesive/
adhesive properties (which affect texturization) (2).

For some peptide properties a precise amino acid
sequence is required for a particular function. In other
cases, and particularly with the functional properties
described above, behavior is more dependent on the
relative proportion of a particular amino acid or class
of amino acids (e.g., acidic, basic, hydrophilic, hydro-
phobic, and aromatic). For example, hydrophobicity,
either in a domain or of an entire protein, is associated
with foaming, gel formation, and binding of nonpolar
flavor compounds (3, 4).

It has for some time been of interest to try to relate
peptide structure to biological or functional properties,
and this has been accomplished with some success. A
fairly recent development of particular interest in the
quantitative structure-activity relationship (QSAR)
field is the use of amino acid “z scores” obtained by
principal component analysis (PCA) of property data (5,
6). The three z scores for each amino acid express its
relationship to the other amino acids in terms that have

chemical meaning. These primarily represent hydro-
philicity (or polarity), side-chain bulk (molecular size),
and electronic properties. The z scores have proven to
be useful for modeling a number of biological effects of
small peptides as a function of the z score values of the
amino acids in each position in a peptide (6). For
modeling the bitterness of dipeptides, for example, this
resulted in a 6-term model (three z scores for each of
the two amino acid positions), and for bradykinin
potentiating activity of pentapeptides, a 15-term model
resulted. More recently, the same approach was ex-
panded to a larger set of amino acids (20 coded + 67
noncoded) and more parameters. Application of PCA
resulted in a set of five orthogonal variables termed zz
scores, of which the first three corresponded to the
original z scores. The zz scores were applied to two
peptide data sets, elastase substrates and neurotensin
analogues, and performed well (7). Classification of
Escherichia coli proteins according to cellular localiza-
tion was accomplished by using auto-cross-covariances
of amino acid sequence z scores (8); this approach
enabled comparison of proteins of differing lengths.
Obviously, as the length of a peptide increases, the
number of terms and complexity of a property model
rapidly increase. Due to practical limitations of model-
ing this means that the number of peptides for which
data would be needed to build a model could soon exceed
reasonable possibility.

It is, however, of interest to consider if there might
not be special cases in which merely the proportion of a
particular amino acid or class of amino acids in a peptide
determines a property. In those instances the modeling
of peptide behavior could presumably be simplified to
the point of manageability.

MATERIALS AND METHODS

The amino acid z scores used were those reported by Jonsson
et al. (6).

The Coomassie Brilliant Blue (CBB) dye binding data for
amino acid homopolymers are from Compton and Jones (9).
Those for proteins are from Sedmak and Grossberg (10).
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The 280 nm absorbance data and formula for estimating
protein UV molar absorptivity are from Gill and von Hippel
(11).

Modeling of the property data as a function of amino acid
composition (expressed as moles per mole of protein, as mole
percent, or as z scores) was carried out by partial least-squares
regression (PLS) using the SIMCA-S for Windows computer
program (Umetrics Inc., Kinnelon, NJ), which also provided
estimates of model fit (the multiple correlation coefficient, R)
and predictive ability (the cross-validated correlation coef-
ficient, Q). When it was necessary to linearize a response, the
natural logarithm transformation was applied.

RESULTS AND DISCUSSION

Some protein functions are thought to result from
very specific localized configurations (e.g., enzyme active
sites, olfaction and taste receptors, and antigen recogni-
tion sites on antibodies). In such cases the precise amino
acid sequence, at least of a region of the peptide, and
usually the three-dimensional configuration are thought
to be important to the activity. Often, however, at least
a portion of the protein is not essential to the function.
This has been shown by demonstrations that synthetic
constructs resembling enzyme active sites have catalytic
effects similar to those of native enzymes (12).

Many of the functional effects of proteins, which
typically are bulk physical properties, are thought not
to be highly dependent on amino acid sequence but more
generally a characteristic of the proportions of certain
amino acids or amino acid classes (e.g., basic, acidic,
hydrophobic, hydrophilic, or aromatic amino acids) in
a peptide (3, 13, 14).

A number of approaches have been taken to relate
protein composition to functional properties. Protein
characterizations have included amino acid composition,
protein geometry (globular versus fibrillar, proportions
of R-helix versus â-pleated sheet conformation, etc.) or
responses to specific dyes (such as those considered to
indicate hydrophobicity). Functional properties are often
assessed by direct physical measurements such as
viscosity, light scattering, or foam performance in either
model systems or foods (15).

Nearly all of the interactions of peptides in biological
systems are noncovalent. These include enzyme func-
tions (catalysis), binding to specific sites on cells (hor-
mone receptors), binding to antigens (antibody function),
binding to small molecules for transport or for active
permeation, and binding to taste or olfaction receptors.
These interactions occur with from modest to great
specificity. Because there are only a limited number of
mechanisms for noncovalent interactions, it seems likely
that various combinations of these interactions are
involved in different proportions in particular protein
properties, and because this range of interactions should
stem from a peptide’s amino acid composition, it should
influence chemical, biological, and physical properties.

In the case of small peptides an approach to modeling
relationships between structure and function has been
taken that has proven useful. Large amounts of struc-
tural and property data for each of the coded amino
acids (5) as well as a number of the noncoded ones (6)
were obtained. Principal component analysis (PCA) was
applied and indicated that three principal components
accounted for 84% of the variance in the property data.
The three PCs represent independent (due to the nature
of PCA, the PCs are orthogonal and thus uncorrelated)
properties that appear to be closely aligned with the

chemical concepts of hydrophilicity and molecular size
and with electronic properties (this component was
heavily influenced by NMR data). The three PC score
values for each amino acid (which have been designated
z scores, see Table 1) define its position along each of
the three axes. The z scores were used to model the
bitterness of 48 dipeptides (6). This led to a six-term
model where the terms were the z1, z2, and z3 scores for
the amino acid in the N-terminal position (position 1)
and the z1, z2, and z3 scores for the amino acid in the
C-terminal position (in this case position 2):

where y is the sensory bitterness and the b values are
the fitted coefficients. This model of dipeptide bitterness
was quite successful, with a correlation coefficient of
0.88 (see Figure 1).

The same PC scores were used to model the brady-
kinin potentiating activity of pentapeptides (6). In this
case the model had 15 terms, corresponding to the three

Table 1. Amino Acid z Scoresa (from Reference 6)

amino acid codeb z1 score z2 score z3 score

Ala A 1.13 -2.36 1.26
Arg R 3.21 2.31 -3.32
Asn N 2.88 1.47 1.55
Asp D 2.33 0.70 1.46
Cys C -0.86 -1.36 2.44
Glu E 1.07 -0.07 -1.10
Gln Q 1.14 0.27 -1.15
Gly G 2.39 -4.12 -0.42
His H 3.49 2.44 0.34
Hos 0.99 -0.85 0.44
Hpr 1.13 2.45 4.36
Ile I -3.48 -1.69 -1.10
Leu L -3.66 -1.22 -0.54
Lys K 3.76 1.16 -2.32
Met M -2.88 0.13 0.31
Nle -3.71 -1.31 -0.55
Nvl -2.51 -1.85 -0.05
Phe F -3.62 1.80 0.97
Pro P 0.02 0.47 3.06
Ser S 2.48 -1.16 1.24
Thr T 0.55 -2.23 -1.49
Trp W -4.02 4.09 0.18
Tyr Y -3.58 2.07 -0.04
Val V -2.27 -2.67 -1.32

a z1 ) hydrophilicity; z2 ) side chain bulk; z3 ) electronic
properties. b Single-letter codes for amino acids.

Figure 1. Six-term model of bitterness of dipeptides as a
function of amino acid z scores (R ) 0.88). Reproduced with
permission from Quant. Struct.-Act. Relat. 1989, 8, 204-209.
Copyright 1989 Wiley.

y ) b11z11 + b21z21 + b31z31 + b12z12 + b22z22 + b32z32
(1)
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z scores for the amino acids in each of the five positions
in the sequence:

This, too, was quite successful, with a correlation
coefficient of 0.90 (see Figure 2).

The general form of the two models can be described
by

where y is the modeled property and n is the length of
the peptide chain.

The same approach was also used to successfully
model both the oxytocic activity (88% of the variance)
and the pressor activity (64% of the variance) of oxy-
tocins, the inhibition of pepsin by pepstatins (80% of
the variance) (5), and the inhibition of angiotensin
converting activity (16). An attempt to model the
oncostatic activity of a set of pseudopeptides was not
successful.

It is conceivable to extend eq 3 to larger peptides, but
the number of terms (3n) quickly becomes overwhelm-
ing. In the case of a peptide containing 100 amino acids
(on the order of 15 kDa), there would be 300 terms to
fit. With multiple linear regression fitting, good model-
ing practice would require data from at least 600, and
preferably 900-1200, different peptide sequences to fit
all of the coefficients (17). Clearly, this is not feasible.
Stepwise multiple regression or, especially, PLS would
greatly reduce the data requirement, but this would still
be unwieldy for proteins. It is, however, useful to
consider how modeling based on the z scores might be
applied to larger molecules in some special cases.

A model of the type shown in eq 3 describes only the
primary structure (amino acid sequence) of a peptide.
Clearly, this is sufficient for the small peptides that
have been modeled, as the models have quite good fits
to the biological properties. This could occur either
because the more complicated aspects of structure in
these cases mainly are determined by the primary
sequence or because the important aspect of structure
for the biological activity depends on only a rather small
region of the peptide (such as a few contiguous or

neighboring amino acids in a sequence), so that three-
dimensional (3D) structure is not so important. It is
increasingly possible to successfully predict polypeptide
3D structures (regions of R-helix, â-pleated sheet, etc.)
from primary amino acid sequences (18), indicating that
the 3D structure is, to at least some extent, determined
by the primary sequence.

Functional properties of peptides and proteins have
often been determined empirically, by direct measure-
ment of a physical property in a model system or an
actual food as a function of protein type and concentra-
tion, matrix pH, composition, etc. In some cases it has
been possible to find relationships between a functional
property and some convenient measurement. For ex-
ample, emulsifying and fat binding capacities have been
related to hydrophobicity determined by response to
some fluorescent dyes (3).

It has been shown in some cases that the physical and
sensory properties of proteins and larger peptides are
related to their content of particular amino acids
(expressed either as number of moles or mole percent)
rather than their precise sequence. Two examples of this
are the foaming activity of beer proteins, which has been
reported to be related to the content of basic amino acids
(19), and the polyphenol-binding activity of proline-rich
proteins (20, 21). In both of these cases there is an
interaction between particular amino acids in the pep-
tide and a small molecule that results in a physical
phenomenon.

Property Dependent on Content of a Single
Amino AcidsPolyphenol Binding. Binding of poly-
phenols by proteins is responsible for the formation of
haze in beverages including beer, wine, and fruit juices
(21), perception of astringency in the mouth (22, 23),
and defense against the antinutritional effect of polyphe-
nols (23, 24).

The most frequent cause of haze (turbidity) formation
in beer, wine, and fruit juices arises from the combina-
tion of proteins with polyphenols to form colloidal size
particles that scatter light (25). Only peptides that
contain proline demonstrate haze-forming activity,
whereas peptides that lack it fail to form haze (20, 26).
As in the case of foam, the physical property is closely
related to the amino acid composition of the peptide.
Results from a model system, in which peptides were
combined with catechin in buffer and heated, then
followed by turbidity assessment, showed an essentially
linear relationship between mole percent of proline and
haze formed (see Figure 3).

In this case the proline content of a peptide was the
main property that mattered and the activity was
essentially independent of molecular size and the con-
tent of other amino acids. This would be equivalent to
eq 3 with b terms for all amino acids other than proline
equal to 0 or

where m is the number of proline residues in a peptide
with a total length of n amino acids and ziP are the three
z scores for proline. This could result from substituting
b values of 0 for all amino acids other than proline in
eq 3, if it is assumed that the position in the amino acid
sequence which proline occupies is irrelevant, even if it
falls in the C-terminal or N-terminal location (which
might well behave differently).

Figure 2. Fifteen-term model of bradykinin potentiating
activity of pentapeptides as a function of amino acid z scores
(R ) 0.90). Reproduced with permission from Quant. Struct.-
Act. Relat. 1989, 8, 204-209. Copyright 1989 Wiley.

y ) b11z11 + b21z21 + b31z31 + ... + b15z15 +
b25z25 + b35z35 (2)

y ) ∑
j)1

n

∑
i)1

3

bijzij (3)

y )
m

n
∑
i)1

3

biziP (4)
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Free proline does not produce haze with polyphenols
or compete against proteins for polyphenol binding (25).
This could be because ionization of the carboxy and/or
amino group interferes with the interaction with polyphe-
nols (i.e., only peptidically linked proline is active). If
prolines occurred in the terminal positions and were
excluded, the relationship would be

There is evidence that peptides with as few as 15 amino
acids combine with polyphenols (27), and the critical size
could well be smaller yet. In any case, the relationship
would still be generally similar to eq 4, particularly for
larger peptides:

The situation can be conceptualized geometrically as a
three-dimensional space defined by the z scores, in
which each amino acid has its own vector (from the 0,0,0
point). Peptide properties can be projected into the same
3D space, also as vectors. The similarity of alignment
of an amino acid vector with a property vector reflects
the contribution of that amino acid to the property. The
magnitude of the contribution is influenced by the
proportion of the amino acid of an effective type in the
peptide; this can be conceptualized as influencing the
length of the amino acid vector.

Property Dependent on Content of Several
Amino Acids. CBB Dye Binding of Amino Acid Ho-
mopolymers. Another special case is a homopolymer,
where the amino acid in each position is the same. This
is equivalent to eq 4, where m ) n and k represents the
particular amino acid of which the homopolymer is built:

If this concept is correct, then some of the activities of
polypeptides that depend on the amino acid composition
should be modelable. CBB dye binding has been widely
used as a method of measuring proteins larger than
∼5000 Da (28), but it is well-known to be heavily biased

in favor of basic and aromatic amino acids (9). This was
demonstrated by determining the relative response of
the dye to a variety of amino acid homopolymers (Table
2). When the amino acid z scores of Jonsson et al. (6;
Table 1) were used to model the data in Table 2, the
results in Figure 4 and eq 8 were obtained.

This model has quite a respectable correlation (R )
0.926) and cross-validated correlation (Q ) 0.799), which
indicate that the amino acid z scores are effective in
modeling at least this property of medium to large
peptide homopolymers. The R value indicates how well
the model fits the data, whereas the Q value is an
indicator of its predictive value for other samples. The
model indicates that the greatest contribution to CBB
response comes from a low z3 value (electronic proper-
ties), as exhibited by arginine and lysine, and next by
high z2 (side chain bulk), for which the greatest con-
tributor is tryptophan.

CBB Dye Binding of Proteins. If, as indicated in Table
2, only six amino acids influence CBB response, then it
should also be possible to predict the CBB response of
a protein from consideration of the proportion of each
critical amino acid. CBB responses for a number of
proteins were previously reported (see Table 3) (10). The
contents of the basic and aromatic amino acids of these
proteins were obtained from the literature (also see
Table 3). Two approaches to modeling CBB binding were
attempted. In the first, the mole percent of each of the
six amino acids in each of the proteins was used. This
resulted in a model of ln(CBB response) with R ) 0.976
and Q ) 0.572 (see Figure 5):

Figure 3. Relationship between the mol % of proline in
synthetic polypeptides and natural proteins and haze formed
in a model system with catechin at 100 °C. Reproduced with
permission from J. Agric. Food Chem. 1999, 47, 353-362.
Copyright 1999 American Chemical Society.

y )
m - 2

n
∑
i)1

3

biziP (5)

y ≈ m

n
∑
i)1

3

biziP (6)

y ) ∑
i)1

3

bizik (7)

Table 2. CBB Binding Responses of L-Amino Acid
Homopolymers (from Reference 9)

polymeric amino acid mol wt (kDa) relative responsea

poly(Arg) 40 36.0
poly(Tyr) 100 4.7
poly(Try) 5 4.4
poly(His) 11 4.2
poly(Phe) 15 1.9
poly(Lys) 35 1.0
poly(Ala) 25 0.0
poly(Gly) 6 0.0
poly(Asn) 9 0.0
poly(Asp) 20 0.0

a Absorbance difference at 595 nm relative to poly(Lys) ) 1.0.

Figure 4. Model of CBB dye binding to amino acid homopoly-
mers (response data from ref 9) as a function of amino acid z
scores from Table 1 (R ) 0.926, Q ) 0.799).

ln(rel CBB response) )
-1.446 - 0.3174z1 + 0.7129z2 - 1.246z3 (8)
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where the %i values represent the mole percents of the
amino acids indicated by the single-letter codes (see
Table 1).

In the other approach, the contribution of each amino
acid to each of the three z scores was estimated. In this
case the number of moles, n, of each of the six relevant
amino acids in the peptide was multiplied by each of
the z scores for that amino acid and these were summed

with the products for the same z score from the other
amino acids. The z1 sum in this case would be

and the general case could be expressed as

This was repeated for each of the z scores, resulting in
three z score sums. These too were quite successful in
modeling CBB response (see Figure 6):

The correlation (R ) 0.935) is slightly weaker in this
case, but this is offset by the simpler model (fewer terms
always resulting in less error in fitting coefficients) and
often, as in this case, better predictive ability (Q )
0.890). According to this equation, low z2 (as found in
lysine, phenylalanine, and tyrosine) and high z1 (exhib-
ited by lysine, histidine, and arginine) make the greatest
contributions to CBB response.

Ultraviolet Absorbance of Proteins. Another widely
used property of proteins is light absorbance near 280

Table 3. CBB Binding Responses of Proteins in Aqueous Perchloric Acid (PA) (from Reference 10)a

protein nb
no. of

Arg (R)
no. of

Lys (K)
no. of

His (H)
no. of

Phe (F)
no. of

Tyr (Y)
no. of

Trp (W)
CBB

(Abs in PA)

plasma albumin (bovine) 607 26 60 17 30 21 3 0.429
fetuin 359 13 15 11 12 8 2 0.349
ovalbumin (egg white) 386 15 20 7 20 10 3 0.357
pepsin (porcine stomach) 326 2 1 1 14 16 5 0.163
trypsin inhibitor (soybean) 181 9 10 2 9 4 2 0.350
lysozyme (egg white) 129 11 6 1 3 3 6 0.348
cytochrome c (horse heart) 104 2 19 3 4 4 1 0.465
trypsin inhibitor (bovine pancreas) 58 6 4 0 4 4 0 0.478
insulin (porcine) 51 1 1 2 3 4 0 0.437
glucagon (porcine) 29 2 1 1 2 2 1 0.469

a The amino acid contents are from sequence data reported on the protein database (swissprot) of the National Center for Biotechnology
Information web site (http://www.ncbi.nlm.nih.gov/). b Total number of amino acids in the protein.

Table 4. Data for 280 nm Molar Absorptivity of Proteins (from Reference 11)

molar absorptivity

protein
mol of

Trp (nW)
mol of

Tyr (nY)
mol of

Cys (nC) measureda predictedb

aldolase (rabbit muscle) 3 12 8 35074 33390
alcohol dehydrogenase (yeast) 5 14 8 48093 47330
carboxypeptidase A (bovine) 7 19 2 64698 64390
carboxypeptidase B (bovine) 8 22 7 72696 74520
chymotrypsinogen A (beef pancreas) 8 4 10 51725 51840
glyceraldehyde-3-phosphate dehydrogenase (yeast) 3 11 2 31775 31390
glutamate dehydrogenase (bovine) 4 18 6 51480 46520
insulin (bovine) 0 4 6 5677 5840
lac repressor (E. coli) 2 8 3 23190 21980
R-lactalbumin (bovine) 4 4 8 28796 28840
â-lactoglobulin (bovine) 2 4 5 17581 17100
lysozyme (hen egg white) 6 3 8 37825 38940
lysozyme (T4) 3 6 2 23900 24990
ovalbumin (chicken) 3 10 6 29972 30590
papain 5 19 7 58570 53610
ribonuclease A (beef pancreas) 0 6 8 9824 8640
serum albumin (bovine) 2 20 35 43962 41180
serum albumin (human) 1 18 35 35761 32930
trypsinogen (bovine) 4 10 12 33357 37000
a Where more than one result for a protein was reported by Gill and von Hippel (11), these are averages. b Calculated as protein molar

absorptivity280 ) 5690nW + 1289nY + 120nC.

Figure 5. Model of CBB dye binding responses of proteins
(data from ref 10) modeled as a function of their contents of
six basic and aromatic amino acids (R ) 0.976, Q ) 0.572).

ln(CBB) ) -1.8813 + 0.081314%R + 0.025067%K +
0.15425%H + 0.016488%F + 0.0053052%Y -

0.043868%W (9)

∑z1 ) z1RnR + z1KnK + z1HnH + z1FnF +
z1YnY + z1WnW (10)

∑zi ) ∑
j)1

6

njzij (11)

ln(CBB) ) -0.7675 + 0.004741∑z1 -

0.005024∑z2 - 0.00248∑z3 (12)
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nm. This has previously been shown to depend on only
three amino acids (cysteine, tyrosine, and tryptophan),
and it was seen that from knowledge of the number of
each of these in a protein and their respective molar
absorptivities, it was possible to very successfully model
protein UV molar absorptivity, ε (11):

where ni represents the number of moles of amino acid
i in the protein (see Figure 7). This resulted in a very
good fit (R ) 0.995) with high predictive ability (Q )
0.988).

The data fit equally well to the form of eq 3 using the
three z scores for each of the three relevant amino acids
(R ) 0.995). Although that approach employed nine
terms and had the disadvantage of increased error in
fitting more terms, in this case the predictive ability did
not decline (Q ) 0.988).

This situation was also approached by calculating the
z score sums for each of the three critical amino acids.
The model produced (see eq 14 and Figure 8)

was as good as that originally described (R ) 0.995) and
had a slightly higher predictive ability (Q ) 0.992). The
greatest contributions to absorbance come from high z2
(tryptophan and tyrosine) and high z3 (cysteine) values.

In the geometric conceptualization of this modeling
approach, the similarity of alignment of an amino acid

vector with a property vector projected into the z score
space indicates the extent to which an amino acid
contributes to the property. Presumably in a case like
that of proline in polyphenol interaction, the alignment
between the proline vector and the polyphenol interac-
tion vector is very close. In a multiple interaction
situation like that of 280 nm absorption, the vector is
presumably intermediate between the vectors of cys-
teine, tyrosine, and tryptophan, but closer to the latter
two (because of their much stronger influence).

Property Dependent on a Short Amino Acid
Sequence. Suppose that a peptide “recognition site” or
“specificity site” depends on two (or several) amino acids
in sequence in a larger polymer and that any of these
amino acids in isolation is ineffective. Furthermore,
suppose that there could be multiple occurrences of the
“significant sequence” in a peptide, especially in tandem
repeats such as are well-known in the salivary proline-
rich proteins (23) and in the “antifreeze” proteins of cold
water fish (29). Then the activity should depend (at least
once the critical size is passed) on the proportion (or
frequency of occurrence) of the significant sequence.

For a two amino acid significant sequence and eq 3,
all of the b values would be 0 except when the two
critical amino acids were adjacent in the correct se-
quence.

where i represents any position in the amino acid
sequence and i+1 is the adjacent position, and there
could be multiple occurrences of this sequence

where m indicates the number of occurrences of the
significant sequence in a peptide of length n amino
acids, zj1 for j ) 1-3 represents the three z scores for
the first amino acid in the critical sequence, and zj2 for
j ) 1-3 represents the three z scores for the second
amino acid in the critical sequence.

Then for a peptide in which the significant sequence
is longer, the situation would be similar

Figure 6. Model of CBB dye binding responses of proteins
(data from ref 10) modeled as a function of the z score
contributions of six basic and aromatic amino acids (R ) 0.935,
Q ) 0.890).

Figure 7. Comparison of protein 280 nm molar absorptivity
measured and predicted (from contents of Tyr, Trp, and Cys).
Data and model from ref 11 (R ) 0.995, Q ) 0.988).

ε280 ) 5690nW + 1289nY + 120nC (13)

ε280 ) -59.569 + 693.18∑z1 + 1930.58∑z2 +

1367.97∑z3 (14)

Figure 8. Comparison of protein 280 nm molar absorptivity
measured and predicted (from z score sums of Tyr, Trp, and
Cys). Data from ref 11 (R ) 0.995, Q ) 0.992).

y ) b1iz11 + b2iz21 + b3iz31 + b1iz12 + b2i+1z22 + b3iz32
(15)

y )
m

n
∑
i)1

3

(bjizj1 + bji+1zj2) (16)

y )
m

n
∑
j)1

3

(bjizj1 + ... + bji+kzjk) (17)
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where there are k + 1 amino acids in the critical
sequence, or

Limitations of the Approach. There is one situa-
tion in which the approach described here would not
lead to good models (low R and/or Q) for either peptides
or proteins. That is the case where the nature of the
protein interaction in question is not represented, or not
represented well, by the properties described by the z
scores. Recent efforts to broaden the z scales by extend-
ing the approach to more amino acids (67 noncoded plus
20 coded) and up to five scales appear to have resulted
in additional useful information (7).

For proteins or longer peptides another problem could
occur. That is the case when a critical amino acid for a
property is not more or less uniformly distributed
throughout the peptide length (as it certainly is in a
homopolymer) but rather is concentrated in a region
that is folded into the interior. Although the critical
amino acid would be assessed by composition or se-
quence analysis, it might be inaccessible for participa-
tion in a chemical interaction. This should not be a
problem for spectral characteristics (such as 280 nm
absorbance) or in analyses when the protein is largely
denatured (as in the catechin binding experiments,
which involved heating to 100 °C). Small molecules,
such as dyes, may also be able to penetrate, at least
somewhat, into a protein structure, but tight, globular
protein domains might be inaccessible.

Still another situation in which the approach would
fail would be when an interaction site is formed by
amino acids that are not close together in the linear
sequence of the peptide but are physically close in the
folded structure.

Dye Binding Response as a Property Indicator.
In a number of cases, protein dye binding response,
where a dye binds to a protein and undergoes a chromic
shift, has been found to be a convenient marker of some
functional or compositional property. Examples include
dyes that bind preferentially to hydrophobic proteins (3)
or those that bind to lysine-rich proteins (15). In these
cases both the dye binding response and the functional
or other property are presumably dependent variables
that are functions of the same aspect of amino acid
composition of the proteins and, thus, correlated with
one another. This can be conceptualized as two vectors
with similar alignments in the same 3D z space. For
example, in beer the predominant protein present
originates from barley hordein, is very poor in basic and
aromatic amino acids, and gives very little response to
CBB, whereas the much less prominent foam active
protein, known to be rich in basic amino acids, responds
strongly (30). In this case both the CBB dye response
and the foaming activity are strongly influenced by the
basic amino acid content of the protein.

Future Possibilities. It may be possible to select a
set of dyes that could be used to characterize different
aspects of a test protein. Results from its application
could reveal information both about the general nature
of the protein (e.g., indicating the presence of regions
of basic, aromatic, acidic, nonpolar, or aromatic amino
acids) and about the functional properties that are
known to be related to these characteristics. This could

be useful for screening proteins for possession of a
desirable functional property or combination of func-
tional properties. It could also have application in
formulating a food product with desirable characteris-
tics. A more remote possibility would be its use as a
guide in the modification of a protein to enhance certain
characteristics or even in the design of a peptide
sequence with desirable functionality.

Conclusions. The amino acid z scores, which were
previously used to develop sequence-dependent models
of small peptide biological properties, were successfully
applied to model some polypeptide properties. A model
of CBB dye binding response of amino acid homopoly-
mers was developed. The z scores were also employed
to model behavior that is mainly a function of the
proportion of one or a few amino acids in a peptide. This
was demonstrated with polyphenol binding activity as
a function of proline content, and ultraviolet light
absorption as a function of a protein’s contents of
tyrosine, tryptophan, and cysteine. The CBB dye bind-
ing response of proteins as a function of the three basic
and three aromatic amino acids was also demonstrated.
In all of these cases it was possible to develop models
using as many terms as the relevant amino acids, but
it was also possible to use sums of the three z score
contributions of each of the relevant amino acids to
produce a simpler model (fewer terms). It appears that
a number of other functional properties of proteins are
likely to be modelable in this fashion.

It may be possible, although it is not yet proven, to
extend the modeling approach described here to encom-
pass situations where the property of interest is a short
amino acid sequence (from two to a modest number of
amino acids) that may or may not recur in the peptide.
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